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CHAPTER ]

INTRODUCTION

A BCH code is a linear cyclic block code with a generator polynomial, g(z),
that is a product of minimal polynomials, where the 2t designed zeros of g(z) have
contiguous powers of 8. Note that t is the designed number of correctable errors,
d, = 2t + 1 is the designed distance, .ﬂ = o, a is a primitive element of the field
GF(Q), b = (Q — 1)/n, and n is the length of a channel codeword. Often the
true minimum distance of the BCH code is larger than d,. A decoder based on the
Berlekamp-Massey Algorithm (BMA) makes use of the designed distance only [1],
however the Fundamental Iterative Algorithm (FIA) can be used to exploit some or
‘a.ll of the code’s unused distance, in many cases increasing the number of correctable
errors [3].

Often, the critical issue is not the number of correctable errors, but the per-
formance gain/hardware complexity ratio. Since hardware complexity is difficult to
measure, this thesis describes and compares hardware realizations for both decoding

algorithms in light of their corresponding performance gains.




CHAPTER II

DECODING ALGORITHMS

The Berlekamp-Massey Algorithm

Given a BCH code over GF(q) with a GF(¢™) error locator field, the generator
polynomial is g(z) = LCM[my(z), my(z),..., ma:(z)], where m;(z) is the minimal
polynomial for #%+-1 for i =1,2,...,2t. Note that 0< j,<q" -2, B=a’, aisa
primitive element of GF(¢™), b = (¢™ _ 1)/n, and n is the number of code symbols in
a codeword. Considering the k coefficients of i(x) as an information block, a channel

codeword is obtained by polynomial multiplication

c(z) = i(x)g(z),
where deg{i(z)} = k — 1, deg{g(z)} =n —k, deg{c(z)} =n — 1, and k < n.
The channel errors can be expressed as
e(z) = Eelj -zl
i=1

where v is the number of errors, [; is the ;*® error position, and ¢, ; is the corresponding
error weight. Assuming the n symbols of the received codeword are the coefficients

of v(z),

v(2) = c(z) + e(x),




since the channel errors are modeled to be additive. The syndrome values can be

calculated as
5, = o(H) = o) 4 (B4 = (Y,

for i =1,2,...,2t. By defining Y; = ¢, and X; = g% for j = 1,2,...,v, the syndrome

equation can be rewritten as

S; = }:}/J . X§jo+i——l).
=1

=

for i = 1,2,...,2t. Therefore, there are 2t non-linear simultaneous equations that
relate the channel errors to the syndromes. An error locator polynomial has roots
X; ! for j =1,2,...,v, and can be used with a little deduction to reveal the error-

syndrome relationship
Az)=Ay 2" +A 1 2+ A2+ 1l=(1—2- X)) (1 -2 X)...(1— 2 X,),
;X AXG) =YX (A X7+ Ao - X 4 L+ A XN 41) =0,
Vi (A Xi+ Ay - X 4+ A - XPHTT 4+ X)) =0,

SV (A X+ Aoy X3 L Ay XEFTT 4 XIH) =0,
i=1

Au Z}/JX; -+ Al/-l Z)/JX;*‘I + ...+ Al Z)/jX;-H_l + E},]X;-H — 0.
=1 j=1

J=1 g=1

Assuming j, = 1,




A Si+A1-Sipi+ oo+ A1+ Sppic1 + S04 =0,

A Spicn+ o+ A - Sin + A - S = =S,

fori=1,2,...,2t. All 2t equations can be expressed at once with the following matrix

equation
Sl S2 Su—l Su Au O+l
S2 S3 .o Sy Sy+1 Ay..l —Iy42
Su Su+1 S2u—2 S2v—l J A1 _Szu ]

Assuming that v < t, the BMA can be used to find the coefficients of the
error locator polynomial A(z) [1]. The initialization of the BMA depends on the first
syndrome. If Sy # 0, AQ(z) = 1, AD(x) =1-8z, L=1,m=1, Am = &,
and 7 = 2; otherwise, ACD(z) = AO(z) = AD(z) =1, L =0, m = 0, Am = 1,
and r = 2. A®)(z) is the current approximation of the error locator polynomial, L is
the stored register length, m is the stored stage number, Am is the stored syndrome
error, r is the current stage number, S'. is the approximation of the rt* syndrome, and

Ar is the current syndrome error. The following pseudo code describes the inductive

loop of the BMA:




while (r < 2t)
{
AO(z) = AT~ (g)
Sy = -3 A 7US,
Ar=S5,-S5,
if (Ar #0)
{
A=
l=r—m
AP (z) = ATV (z) + Az’ AtV (x)
if (deg{A®(z)} > L)
{
L = deg{A")(z)}
m=r
Am = Ar
}

r=r+1

A®)(z) is the error locator polynomial A(z), and L is the number of received symbol
errors v. If deg{A(x)} # L, a decoding failure has occurred [1].

A Chien search is an evaluation of a polynomial at all possible values of 3%,
where r is arbitrary. This search can be used to find the v zeros of A(z). The Forney

Algorithm [1] can then be used to find the error weights

QB)

=Ry




where

Qz) = S(z)A(z)(modz?),

2t
Sx) = Y Sl

=1
Nz) = Y |31 At
=1 |j=1
Now, e(z) is fully specified and
c(r) = v(z)— e(x),

i(z) = c(z)/g(x).

For the (17,9) BCH code, the error locator field is GF(28), b = 15, 8 = a!®,
9(@) =(@=-p)-(@=p (- ) (-8 (- ) (z-0®)- (z— %) (= - ),

and the syndromes are calculated as follows, assuming j, = 1,

S = v(ﬂ)a

Sy = (B =(5)%

This last equation can be proven by considering a generic polynomial defined over

GF(q), where g is the characteristic of the field GF(Q),

n-1
f(z)= Zfi'fl?i-
i=0

If the argument of f(z) is raised to the ¢q power,




n—1
fe) = fi 2™
=0

Since f; € GF(q), f; = f{. Therefore [1],

@) =3 g0 = [z: i z] — F@).

=0 t1=0

For all single-error correcting binary BCH codes, the assumption that j, = 1
forces the Berlekamp-Massey Algorithm to degenerate into a mere comparison. If
S; = 0, then A(z) = 1 and L = 0. Therefore, the received codeword has no errors,
or a decoding error has occurred. In this case, the received codeword is passed as
the decoded codeword. If Sy # 0, then A(z) = 1 — S;-z and L = 1. Therefore,
the received codeword has a single error, or a decoding error has occurred. For this
case, the zero of the error locator polynomial is extracted by simply noting that for
A(z) =0, z = 1/S5;. Next, the error location is given by l; = logs(S1), and the I; bit
of the received codeword is complemented. These two cases constitute all possibilities

since Sy = (S;)?. Therefore, decoding failures are impossible.

The Fundamental Iterative Algorithm

The FIA uses some or all the zeros of g(z) that the BMA does not, to try
to increase the decoded distance of the code. Given the same received block v(z)
discussed for the BMA, the syndromes for the matrix = can be calculated such that

S; = v(8), where




- -
Sa Sa+i1c1 Sa+it:c1
—_ Sa+c2 Sa+i1c1+02 oo Sa+i,/c1+c2
Sot@-1es Satirer+{t'-1)cy Satiper+(t'—1)ca ]

Note that t' is the FIA’s number of correctable errors, as opposed to t, which is
the BMA’s number of éorrectable errors. The variables a, ¢y, ¢, %1, i3, ... , iy are
code-specific and have permanent values for each code, where 0 < i; < ... < ig.
Maximizing t', these permanent valueé are deduced by trial and error using the whole
set or a subset of the zeros of g(z) [3].

Since = possesses recurrent rows (i.e. rows equally spaced by an index of c;),
the decoder algorithm complexity is O(n?). With ¢; =¢; = 1 and 34, = i; + 1, for
aljeo,..,t' -1, Wheré ip = 0, the FIA degenerates into the BMA since the entries
of = constitute a single set of 2t known consecutive syndromes [3].

Given =, if the number of symbol errors in the received codeword is less than
or equal to t', then the FIA can be used to find the coefficient polynomial 1(z) and
the rank of =, A. If the FIA degenerates into the BMA, 1(z) = A(z). Otherwise, the

relationship of ¥(z) and A(z) is not as clear. In general,

A
fl@) =3 t-2",
=0

where i = 0. Also,




f(z) = h(z) - A(1/2) ,

where h(z) € GF(¢™)[z]. Therefore, 1(z) and A(x) have a relationship that is clouded

To initialize the FIA, the discrepancy list is set to zero (D = [0,0,...,0]), the
discrepancy row position list is set to zero (u = [0,0,...,0]), the column position is
set to 1 (s = 1), the row position is set to 1 (r = 1), and (z) = 1. The following
pseudo code describes the inductive section of the FIA, where d, is the discrepancy

for the current row and column and o™ (z) = 1+ YiH . - 7 [3],[4]:

label 1:

d"xs = [¢($) ' (p(r) (x)]s = Ef_—__é i’ Er,a—i

label 2:
if (dys = 0)

{

if (r=1)
{
A=s—-1
END
}

else

by h(z), which is codeword-dependent [3].
\
|
\

r=r+1
goto label 1
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{
if (D, = 0)

{

D, = d,,

U, =8

P)(z) = Y(z)
s=8+1
r=1

goto label 1

}
else

{ -

Y(@) = Y(z) - B2 - P (z) - 2o
dr,s =0

goto label 2

}

With (z) and A known, the syndrome dependence polynomial f(z) can be
constructed. Since A(1/z) has zeros of the form 3%, where ¢, is the position of the
I** potential error, a Chien search can be used on f(z) to eliminate as many zeros of
h(z) as possible. All the zeros found with the Chien search are considered members
of the set U, where |U| = §. Using these members, a polynomial similar to A(z) can

be constructed

[(z) = l];ll:(l —z-U).

Some zeros of h(x) might be used in building I'(z). Otherwise, I'(z) = A(z), which is
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capable of revealing t' or less error locations, as opposed to the BMA'’s A(z), which
can only reveal t or less error locations [3].

Given the largest set of known consecutive syndromes £, the Forney Algorithm
requires |£| > & or more specifically |¢| = max{6}. For all cases where = has entries
that form two or ﬁore distinct sequences of known consecutive syndromes (i.e. multi-
sequence cases), |¢| < 2t — 1. Therefore, if § > 2t', the number of known consecutive
syndromes must be increased. These extra syndromes may or may not be found using

the n syndrome linear dependence equations or “patch” equations described by

Sa+ixc1+jc2 + flSa+i,\_161+jc2 + o + f,\Sa+jc2 = 0’

where j € 0,...,n — 1. Only t' of these equations are necessary, one for each possible
non-zero value of A\. The value of j for each equation can be found by trial and error.
If the extra syndromes cannot be found, the FIA will not be able to correct t' errors
even though = is a t x t' + 1 matrix of the form described previously [3].
Assuming |£| > &, an adapted form of the Forney Algorithm can be used to
find the error weights
QB~%)

"= TrEEy

where

Q) = S(z)I(z)(modz),

13
S) = Y Sarj1aV Y,

=1
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Therefore, e(z) is fully specified by

5
e(x) =Y W, - z%,

=1

and,

c(z) = v(z)—e(z),

i(z) = c(z)/g().
For the (17,9) code, t' = 2. The syndrome matrix = is

Sl SS SIS

(1

Sy So Sie

wherea =1,¢;=1,c3 = 1,4 =7, and i3 = 14. Since § < 8, || needs to be 8, so
the following patch equations were found by trial-and-error by evaluating the linear
dependence equation at j =0,...,n — 1:
Sis: 1 +Ss = 0,for \=1and j = 14,
Sg Y+ S5 +Ss = 0, for \=2and j=717.
For j =t',...,n—1, the equation does not contain syndromes from a particular row in

E. These syndromes are contained in a particular extension row of =. For example,

Sg, Sis, and S5 comprise the sixth extension row of =, which corresponds to j = 7.
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For j = 14, S;5 and Ss comprise the first two elements of the thirteenth extension
row. Note that Si, Sz, Sy, Sg, So, S13, S15, and Sje are all known. If S3, S5, Se, and
Sz, could be found, |¢| = 8. Therefore, for each possible value of A, the syndrome
dependence equation was examined for each value of j, until it became an equation
with a single-term unknown that was in the conjugate set containing S3, Ss, Ssl, Sz,
S10, S11, S12, and Syy.

The generator polynomial is the same as the that for the BMA, but the fol-

lowing version is multiplied out to show the coefficients in GF(2)
gz) =2 +2" +28 +2' + 2+ + 1.

As an example, assume that the information polynomial is i(z) = 1 and the error
polynomial is e(x) = 28 + 1. Then, the codeword polynomial is ¢(z) = z® + z’ +
78 + 2% + 2% + z + 1, and the received polynomial is v(z) = z” + 2® + 2* + 2% + =.
Calculating syndrome S; and using the relationships Sz = (51)%, Ss = (S2)*, Sis =

(S8)?, Sis = (Si6)?, and Sy = (Sy5)* gives

(1
f

Now, ¥(z) and X can be found with the FIA:
Initialization:

D=[0,0;u=[0,0};s=1r=Lyx)=1
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Loop 1:
dig =% 211 = o
D =[c®0u=[1,0;vMNz)=1;8s=2;7r =1
Loop 2:
dig =% E12 + 91 Z11 = Q"
() = () - B2 - pO(2) -5 = 1 + oPzr = 2
Loop 3:
dog =19 Zga +1 - Ep1 = b
D = [a® o;u = [1,2];¢(2)(x) =14+a%Bzr;s=3;r=1
Loop 4: |
dig =0 Z13+ %1+ S+ 2 T = o
P(z) = P(z) — B2 - YD(z) - 22 = 1 + Pz + 0?Pa?r =2
Loop 5:
d2g =0 Zg3+ Y1+ Sa2+ 2 Sy = 1
¥(z) = ¢P(x) — d—;f YD (z) z =1+ o'z + o™2?
A=2 |
This ¥(z) and A yield f(z) = 2 + 0!%27 + o™. Using a Chien search, the zeros of
f(z) are a®'® and a®%; therefore, I'(z) = a!%2? + oz + 1. For this code, |¢| = 8.
Also, for this example, A = 2. Therefore, S3, S5, Sg, and S; must be determined

using the A = 2 patch equation in order to have 8 known consecutive syndromes. All
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four unknown syndromes are in the same conjugate set, so S5 can be deduced from

the patch equation and then the following equations can be used to find Ss, Sg, and

Sq:
(Ss)* = S,
(S3)* = Se,
(Se)* = Sy

It may be confusing why |{| = max{é} = 8. This value is determined by constructing
a FIA decoder in software. This soft;ivare is used to decode all possible error pat-
terns containing t' or less errors starting with [{| = 2¢' and increasing |£| after each
attempted verification until the decoder corrects all of these error patterns. This
process finds the minimum value of |£| required to properly decode ¢ or less errors.

With S, through Sz and I'(z) known, the Forney algorithm can be used to
identify which zeros of f(z) of the form % correspond to actual error locations. For
this example, both zeros are identified, but there are many cases where the identified
zeros are a subset of the zeros found with the Chien search. With the two zeros
identified, e(z) = 2® + 1, which is the correct error pattern.

The relation between the FIA and the BMA is not easily seen; however, there
is one. Starting with column one, the FIA uses a truncated BMA; it starts out like
the BMA but stops if a discrepancy, d,,,, is non-zero. This discrepancy and its column

number are stored as D, and u, along with the current approximation of the coefficient




16

polynomial, ¥(z), which is stored as 1(*)(z). For the other columns, the initialization
is dependent upon all previous columns; the procedure is similar to the procedure for
the first column, except when a non-zero discrepancy is encountered, the truncated
BMA will stop only if no discrepancy has been recorded for that particular row, in
essence, if D, = 0. If d,, # 0 and D, # 0, ¢(z) is updated. The algorithm continues
this pattern for each column until it is able to perform the full BMA on a column. It
is possible that the full BMA might be performed on the first column, but this would

indicate that no errors could be found.




CHAPTER III

PERFORMANCE COMPARISONS

Since theoretical performance measures of BCH codes are inexact, simulation
was necessary to empirically measure performance. Therefore, a baseband digital
communication system using BMA and FIA decoders was programmed on a computer.
This simulated system was used to _approximate the bit error rate (BER) at the
decoder output versus SNR curve for both the BMA and the FIA. This curve is
important since it gives insight into the system coding gain, which is an important
performance indicator.

Let p,(h) be the BER for the uncoded system operating at the SNR h, and
let pc(h) be defined in a similar way for the coded system. Then, the coding gain is

defined as

9(p) = 0" (p) — P ' (p),

where p is the BER and all SNR'’s are in dB. Therefore, the coding gain at a given BER
is the difference in SNR of the uncoded and coded systems when each are operating

at a specific BER [11].

17
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The Simulated System

This statistical computer simulation entails:

1. Generating an X bit maximum entropy encoder input sequence,

2. Encoding in k symbol blocks at a k/n input/output rate, which involves con-
structing an n-length channel codeword from a k-length source codeword, where
each component is a binary symbol,

3. Generating an effective channel error sequence of length Xn/k such that the
errors are exponentially spaced. The probability of an error is approximately
the BER of the coded channel, a;.nd the number of decoder bit errors y is large

(greater than 100) [2],
4. Adding the error sequence to the encoded sequence bit by bit in GF(2),

5. Decoding in n symbol blocks at an n/k input/output rate.

It is assumed that source encoding, if necessary, has been applied so that the
binary symbols at the encoder input are independent and equally likely. This input
can be modeled by a pseudo-noise (PN) sequence. A PN sequence is periodic with a
maximum period of N = 2" — 1, where r is the number of stages in the generating
shift register [10]. In many cases, tap weights can be selected so that the maximum
period is achieved, resulting in a maximal-length sequence [10]. Each maximal-length
sequence has at least three non-zero taps. Those sequences with only three taps are

the most time efficient, since the generation speed increases as the number of non-zero

taps decrease. The periodic autocorrelation R, (u) is defined as (No— N;)/(No + Ny),
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where p is a sequence with period N = Ny + Ny, s is the modulo-2 addition of p and
its u position cyclic shift, Np is the number of 0’s in s, and N; is the number of 1’s
in s. Any modulo-2 addition of a maximal-length sequence with its u position cyclic
shift is the ¥’ position cyclic shift of the maximal-length sequence. Also, the number
of 1’s in a maximal-length sequence is one greater than the number of 0’s; therefore,

the periodic autocorrelation function of any maximal-length sequence is [10}

1.0 if u=IN
Ry(u) =
: —x if u#IN
where | € I. As r approaches 0o, N approaches 0o, and the correlation dwindles to
0.
For a simulation, N = 2% — 1, where z = [logsX] and X is the number of

input bits required by the encoder for an entire simulation. X is difficult to determine,

since the calculation of X is based on the coded BER p

x = X&)
pmn

where Y is the number of bit errors at the output of the decoder. The BER at the
decoder output is actually a random variable (RV), which can have a multimodal
distribution if X is not large enough. The goal is to choose X so that ) is large

(greater than 100) [2].

The probability of a bit error at the output of the raw channel when an encoder

and decoder are present is the BER of the coded channel ¢,. If ), > 1072, the effective
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channel error sequence can be constructed by thresholding successive outputs of a
uniform pseudo random number with ,. If the output is less than or equal to ¥, a
1 is declared; otherwise, a 0 is declared. If 1, < 1072, the following approach is used.

The location of the first error is calculated by [6]
1
As = —— In(u),

where As is the number of zero sequence elements until an error occurs and u is a
uniform pseudo random number. Subsequent error locations can be determined by
using the same equation where As is the number of zero sequence elements until the

next error and u is a new uniform pseudo random number [6].

The Results

For the (17,9) BCH code with g(z) = m;(z) and a minimum distance d = 5,
the exploited distance is 4 for the BMA and 5 for the FIA, yielding t = 1 and ¢/ = 2,
respectively. Figure 3.1 shows the corresponding theoretical performance curves of

error probability versus Ej/N,. The theoretical BER at the output of the decoder is

given by [7]
n .7 n . .
P(bit error at decoder output) = ) - -p?-(1-p)"7],
j=t+1 -
J

where
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n . .
P(j errors in codeword) = -p?-(1-p)"7,

P(bit error | j errors in a codeword) = %

Note that for the FIA the summation actually ranges from ¢’ + 1 to n. For the
theoretical plots, the FIA coding gain is positive for all SNR’s above 3.2dB, and the
BMA coding gain is positive for all SNR’s above 11dB. Also, the FIA net coding gain
is 1.5dB and 1.8dB for system BER’s'IO‘5 and 108, respectively, whereas the BMA
net coding gain is small for both these system BER’s.

To validate the simulation, decoding errors (those errors that give rise to unde-
tected word errors) were disabled by giving the decoder knowledge of the transmitted
codewords. Figures 3.2 and 3.3 compare the simulation results and the theoretical
curves for the BMA and FIA, respectively. Each simulation curve coincides with its
corresponding theoretical curve. Therefore, both simulation models are considered
valid.

Next, both simulations were performed without restriction. Figures 3.4 and
3.5 compare the results with the theoretical curves and the Torrieri Bounds [8]. The
Torrieri Bounds assume that the number of bit errors in a codeword has a binomial
distribution (independent bit errors). If a codeword has t errors or less for the BMA or

t’ errors or less for the FIA, the codeword is assumed to be fully correctable; otherwise,
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the decoder is assumed to add (worst case) t errors for the BMA or t' errors for the
FIA to the codeword for the upperbound calculation, and subtract (best case) t errors
for the BMA or t' errors for the FIA for the lowerbound calculation. For both the
BMA and FIA simulations, the simulation curves were just above the theoretical
curves, indicating that in the event of a decoding error, the decoder added errors to
the received codeword slightly more often than it subtracted errors [8]. Figure 3.6
shows the simulation performance curves for both the BMA and the FIA. At a BER
of 1075, the BMA coding gain was -.25dB, and the FIA coding gain was 1.4dB. The
10~® BER coding gains are not available since the simulation was not performed for

high SNR due to the exponential growth in required execution time.
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CHAPTER IV

HARDWARE COMPARISONS

Two areas of comparison are examined in this chapter. First, the critical
path is identified. The critical path is the hardware complexity of the algorithm
bottleneck; it is measured with respect to the processing of one received bit. Second,
hardware complexity of the entire algorithm is identified. Hardware complexity is
similar to chip real-estate analysis but is viewed at a higher level. For this chapter, the
complexity will be measured by the number of GF additions, GF multiplications, GF
multiplicative inverses, arithmetic additions, arithmetic multiplications, comparisons,

temporary memory slots, and permanent memory slots.

Critical Path for the BMA

Figure 4.1 shows the high-level hardware layout for the entire decoder. This
layout calculates the syndrome S; using Horner’s rule [1]. The latency of this syn-
drome calculation is the time required to perform n — 1 GF multiplies and n GF
additions. The maximum latency of the rest of the decoder is the time require to per-
form n—1 GF multiplies, 1 GF addition, 1 GF multiplicative inverse, n—1 arithmetic
additions, and 2n comparisons. The calculation of syndromes is then the bottleneck,

since n — 1 GF additions will most likely require more time than 1 GF multiplicative

29
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inverse, n — 1 arithmetic additions, and 2n comparisons. Therefore, the critical path

is 1 GF addition, 1 GF multiplication, and 1 memory element.

Critical Path for the FIA

Figure 4.2 shows the high-level hardware layout for the entire decoder. This
layout also calculates the syndrome S; using Horner’s rule [1]. The latency of the
calculation and storage of syndromes is the time required to perform (n+6) GF mul-
tiplies, n GF additions, plus RAM loading. The two syndrome RAM’s must remain
unchanged until the calculation of Q(a:), in the Forney Algorithm, is completed. In a
worst case scenario, this storage time is approximately the time required to perform
6- n GF multiplies, 6 - n GF additions, 3 GF reciprocals, 3 multiplies, n additions,
and n compares, which is much longer than the latency time for the calculation and
storage of syndromes, assuming that the time to load the two RAM’s is relatively
small. Therefore, the critical path lies between loading the RAM and completing the
calculation of Q(x). Since the critical path is measured with respect to the processing
one received bit, the FIA has no obvious critical path, since the bottleneck cannot be
dissected in this way.

As a side note, RAM 1 has six bytes of memory (8 bits/memory element) with
a three bit addressing scheme, and RAM 2 has eight bytes of memory with a three
bit addressing scheme. Both RAM’s can be concatenated into one 14 byte RAM with

a four bit addressing scheme, sacrificing access time.




Table 4.1 compares the hardWare complexity of the two algorithms. Since
the GF multiply is the most complex of all the operations, assuming polynomial

representation for the field elements, the FIA is roughly 20 times more complex than

the BMA.

Complexity Comparisons

Table 4.1. HARDWARE COMPLEXITY COMPARISON

Algorithm | GF + | GF x | GF Reciprocal | + | X | Comparison
BMA 2 2 1{1]0{3

FIA 34 42 3151110
Algorithm | Temporary Memory | Permanent Memory

BMA 37 0

FIA 128 14
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FIGURE 4.2. (continued)
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FIGURE 4.2. (continued)
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CHAPTER V

SUMMARY AND CONCLUSIONS

The BMA uses only the designed distance of a BCH code, which is often
smaller than the true minimum distance [1]; however, the FIA can be used to exploit
some or all of the unused distance, in many caseé increasing the number of correctable
errors [3]. Although the number of correctable errors is an important performance
indicator, a more complete indicator is the performance gain/hardware complexity
ratio. At a BER of 1075, the performance gains are -.25dB and 1.4dB for the BMA
and FIA, respectively; however, the hardware for the FIA decoder is roughly 20 times
more complex than the hardware for the BMA. Also, the critical path for the BMA
is 1 GF addition, 1 GF multiplication, and 1 memory element, whereas the FIA is so

complex that the critical path not easily identified.
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CHAPTER VI

FUTURE DIRECTIONS

Since the comparison of the BMA and FIA is code-specific, other codes with
higher designed distances might be analyzed to give a more balanced comparison.
Also, the Extended Fundamental Iterative Algorithm (EFIA) might be analyzed for

net coding gain and hardware complexity [4].
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